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Abstract 

Optimizing a multicurrency portfolio requires a flexible model to manage exchange 

rate risk as well as representational data on asset-currency dependency. Additionally, 

deliberate scenario generation is also vital for portfolio risk evaluation, especially for the case 

of extreme events. This study proposes a mean-CVaR portfolio optimization model with 

currency overlay under regular-vine copula generated scenarios. To highlight the importance 

of the scenario generation technique, the performance of the resulting portfolios from the 

proposed method are compared with those optimized under multivariate normal assumption. 

The results show that portfolios from our proposed approach outperform those from the 

traditional method, both in return and risk metrics. This outperformance is largely attributed to 

active currency hedging, which takes advantage of detailed information captured by a 

regular-vine copula. 
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Introduction 

Markowitz’s innovative work in portfolio optimization, as outlined in Markowitz 

(1952), initially tackled risk minimization by targeting the variance of returns while aiming for 

a specified level of expected return. Subsequent iterations of portfolio optimization problems 

have replaced variance with Conditional Value-at-Risk (CVaR) to better address downside 

risk. Rockafellar and Uryasev’s contribution, as discussed in Rockafellar et al. (2000) 

introduced the mean-CVaR portfolio implementation, which has since become a standard 

approach among practitioners. However, the effectiveness of the CVaR risk measure is 

heavily reliant on accurately modeling the distribution of portfolio returns. 

Traditional methods in finance often characterize probability distributions using the 

first four statistical moments: mean, variance, skewness, and kurtosis. Dependencies 

between distributions are typically represented using correlation matrices, as discussed in 

Høyland et al. (2003) and Kaut et al. (2007). However, these methods are limited in their 

ability to describe the intricate relationships between asset returns, particularly when dealing 

with outliers or non-linear dependencies. Correlation measures, such as Pearson’s 

correlation coefficient Pearson (1895), capture only linear relationships, which can be 

inadequate for modeling the complex behavior of financial returns. Rank-based correlations, 

like Kendall’s tau (Kendall, 1938), offer a more robust alternative for capturing non-linear 

dependencies. 

In reality, financial asset returns exhibit non-Gaussian behavior with asymmetric 

dependence structures. Empirical evidence indicates that returns are more strongly 

correlated during market downturns compared to periods of market stability or growth (see, 

for instance, Ang & Bekaert, 2002; Ang & Chen, 2002; Campbell et al., 2002; Erb et al., 1994; 

Longin & Solnik, 2001; Mitchell & Pulvino, 2001; Patton, 2004). This phenomenon highlights 

the inadequacy of models assuming normality and linear dependence in accurately reflecting 

market dynamics. To address these limitations, copulas have been introduced as a more 

versatile tool for modeling the dependence structure of asset returns. 

The concept of copulas, introduced by Sklar (1959), provides a method to construct 

joint distributions by linking marginal distributions. This approach, further elaborated by 

Nelsen (2007), allows for the independent modeling of marginal distributions and their 

dependence structure. Unlike the multivariate normal distribution, which assumes Gaussian 

marginals with linear dependencies, copulas enable the combination of marginal distributions 

from various families, thus accommodating non-normal characteristics such as heavy tails 

and asymmetric dependencies. This flexibility significantly enhances the robustness of risk 

management models. Despite the advantages of copulas, previous studies (Kaut, 2014; Kaut 

& Wallace, 2011; Sutiene & Pranevicius, 2007) have shown that empirical copulas may be 

unreliable with small sample sizes and that single-family copulas used in multivariate models 
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limit flexibility in high dimensional settings. To overcome these challenges, this study adopts 

vine copulas (Bedford & Cooke, 2002), which decompose high-dimensional dependence 

structures into a series of bivariate copulas organized hierarchically. This method, described 

in Kielmann et al. (2022) and Karakaş (2022), provides greater flexibility and accuracy in 

modeling complex dependencies. 

The specific issue addressed in this study is the inadequacy of traditional 

multivariate normal distribution models in capturing the complex, non-linear dependencies 

and asymmetric behaviors of asset returns, especially during market downturns. Current 

literature has largely focused on models assuming normality and linear dependence, which 

fail to account for the extreme events and tail dependencies observed in financial markets. 

This gap highlights the need for more robust modeling techniques that can better represent 

the true nature of asset return distributions. This paper applies the vine-copula model to real-

world data, focusing on the optimization of international portfolios using a mean-CVaR 

framework. It introduces a novel multi-currency portfolio optimization model that incorporates 

currency overlay through foreign exchange forwards to manage currency exposure. The 

optimization model accounts for transaction costs and hedging expenses associated with 

exchange rate fluctuations, as detailed in Chatsanga and Parkes (2017). 

The research question guiding this study is: How can a copula-based model be 

developed to improve the accuracy and robustness of multicurrency portfolio optimization 

under various market conditions? This study contributes to the existing literature by 

demonstrating the application of vine copulas in capturing complex dependencies among 

asset returns and by comparing the performance of these models against traditional 

multivariate normal distributions. Our findings reveal that vine copula-based models provide 

superior risk-adjusted returns and better manage extreme market events, thereby offering a 

significant advancement in portfolio optimization techniques. Additionally, the economic 

context for this study involves significant market volatilities and varying economic conditions 

of the selected currencies (USD, GBP, EUR, JPY and CNY). These currencies were chosen 

due to their substantial influence on global financial markets and the diversity they bring in 

terms of economic environments. Historical data on these currencies reveal fluctuations 

influenced by geopolitical events, monetary policies, and market sentiment. Our model 

integrates these factors, ensuring that the scenarios generated reflect realistic market 

conditions, thereby enhancing the practical applicability of our findings. 

In summary, this study aims to fill a notable gap in the literature by providing a 

comprehensive and flexible model for multicurrency portfolio optimization. By leveraging the 

strengths of vine copulas, we offer a method that not only improves the representation of 

dependencies among asset returns but also enhances the overall risk management strategy 

in international investments. The findings of this research have significant implications for 
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both academic research and practical portfolio management, offering a robust tool for 

navigating the complexities of global financial markets. 

The structure of the paper is organized as follows: Section 2 presents the approach 

using regular-vine copulas for scenario generation, construction of currency overlay, and 

formulation of the optimization model. Section 3 presents the experimental results with 

analyses, and Section 4 concludes the study. 

Methodology 

This section presents the comprehensive methodology employed in our study to 

optimize a multi-currency portfolio using regular-vine copulas and the mean-CVaR 

framework. We begin by describing the scenario generation process, utilizing empirical 

marginal distributions and regular-vine copulas to capture nonlinear dependencies among 

asset returns. Next, we detail the formulation of the multi-currency portfolio optimization 

problem, incorporating currency overlay techniques to manage exchange rate risk. The 

methodology also includes the estimation of empirical distributions, the construction of joint 

distributions, and the generation of multiple scenarios. 

We employ Conditional Value-at-Risk (CVaR) as the risk measure in this study due 

to its ability to provide a more comprehensive assessment of tail risk compared to traditional 

measures like volatility and Value-at-Risk (VaR). While VaR indicates the maximum potential 

loss at a certain confidence level, it does not account for the magnitude of losses beyond 

this threshold. In contrast, CVaR captures the expected losses occurring in the tail of the 

loss distribution, offering a clearer picture of extreme risk events. This characteristic is 

particularly valuable in portfolio optimization, as it allows for better risk management under 

adverse market conditions. Additionally, CVaR is coherent, satisfying properties such as 

subadditivity and convexity, which are desirable for constructing diversified portfolios. These 

features make CVaR a robust choice for managing risks in a multi-currency portfolio. 

Finally, we outline the evaluation of the optimized portfolios through backtesting and 

the decision-making processes involved in selecting the optimal portfolio. This detailed 

approach ensures the robustness and applicability of our model to real-world financial 

markets. 

Creating Scenarios with Regular-Vine Copulas. 

The paper outlines a method for scenario generation in our optimization problem. In 

essence, we employ empirical marginal distributions to avoid assumptions about asset return 

distributions. To address nonlinear dependencies, we construct a joint distribution using a 

regular vine copula. 
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 1) Modelling marginal distributions - We model marginal distributions by fitting an 

invertible empirical distribution to each financial return time series and estimating a 

marginal probability distribution function (PDF) based on empirical data. We use 

kernel density estimation (KDE) to estimate an empirical PDF of a return time series. 

For a random variable  with  independent observations , the kernel 

density estimator approximates the density value at a point x in the PDF as follows: 

  

 

 

(1) 

 

In our analysis, we use the Epanechnikov kernel as the kernel function 

denoted by , and we determine an optimal bandwidth  following Silverman’s rule of 

thumb (Silverman, 1986). We then create an empirical cumulative distribution function 

(CDF) for each return series based on the estimated PDF as follows: 

 

 

(2) 

 

  The resulting CDF is uniform within the range  and serves as an input 

parameter for a copula function. In the context that follows, we represent the CDF of a 

random variable  as . 

 2) Estimating a regular-vine copula - To fit an R-Vine copula to a given dataset, 

Dissmann et al. (2012) outline the procedure as follows: 

(a) Choose the R-Vine structure by determining the unconditioned 

and conditioned pairs for pair-copula construction. 

(b) Fit a pair-copula family to each selected pair in step (a). 

(c) Estimate the parameters corresponding to each copula. 

 In our research, we employ the sequential method introduced in Dissmann 

(2010), which involves fitting an R-Vine tree-by-tree approach, to estimate the R-Vine 

copula. The VineCopula package in R (Schepsmeier, 2012) is used to estimate the R-

Vine copula model. This step yields the optimal combination of bivariate copulas and 

conditional bivariate copulas within the R-Vine structure for the dataset available. 

 3) Sampling from a regular-vine density - We adopt the R-Vine sampling 

approach described in [24]. This process begins by sampling  which are 

independent and uniformly distributed on the interval . Then set:  
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(3) 

 

where  for  represents the inverse of the conditional 

cumulative distribution function introduced by Joe (1996). By solving a set of 

equations (3), we obtain dependent , forming a collection of single scenarios 

for n random variables. To generate N scenarios, the process of randomly sampling 

 is repeated  times. 

 Formulating a Multi-Currency Portfolio Optimization Problem. 

 In an international portfolio, alongside market risk associated with asset returns, 

there is also exposure to exchange rate risk. To address this risk, investors often employ 

currency overlay techniques, which involve adjusting currency exposure using exchange rate 

derivatives to either speculate or hedge against exchange rate fluctuations based on their 

preferences. The optimization problem formulation presented subsequently is adapted from 

the approach outlined by Chatsanga and Parkes (2017). 

 Selection of Currencies and Home Countries.  

 The currencies selected for this example are the US Dollar (USD), Euro (EUR), and 

Japanese Yen (JPY). These currencies were chosen based on their substantial influence on 

global financial markets and the diversity they represent in terms of economic environments. 

The United States, the Eurozone, and Japan are among the largest and most economically 

significant regions globally1, making their currencies highly relevant for international portfolio 

optimization. In what follows, the portfolio funding currency is chosen as USD. 

2.2.2. Portfolio Structure with Overlay Constraints. When constructing a portfolio that invests 

in multiple countries, there are two primary sources of returns that impact the portfolio’s 

overall market value. The first source stems from asset prices along with dividends or other 

forms of interest-bearing income, while the second source relates to currency fluctuations 

leading to gains or losses. Consequently, each country’s investment within the portfolio 

reflects a combination of exposure to asset markets and exposure to currency exchange 

rates. This setup also allows for the adjustment of currency exposure, thereby mitigating risky 

                                                        
1 Based on Statista Search Department (May 21st, 2024) Triennial forex daily volume with 39 different 

currencies 2001-2022. Statista. https://www.statista.com/statistics/247328/ activity-per-trading-day-on-

the-global-currency-market/. 

https://www.statista.com/statistics/247328/activity-per-trading-day-on-the-global-currency-market/
https://www.statista.com/statistics/247328/activity-per-trading-day-on-the-global-currency-market/
https://www.statista.com/statistics/247328/activity-per-trading-day-on-the-global-currency-market/
https://www.statista.com/statistics/247328/activity-per-trading-day-on-the-global-currency-market/
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foreign currency positions. Currency overlay refers to altering currency exposure, which 

influences the initial currency holdings of an unhedged portfolio. 

Table 1 Sample portfolios with and without currency overlay. An overlay position is determined 

by the deviation of currency exposure from asset exposure. The total overlay is calculated as 

half of the absolute sum of all overlay positions. The portfolio funding currency is USD.  

 Hedged  Unhedged 

US UK JP  US UK JP 

asset exposure (%) 35 45 20  35 45 20 

currency exposure (%) 27 52 21  35 45 20 

overlay position (%) -8 7 1   -  

total overlay (%)  8    -  

 

A currency overlay comprises overlay positions, illustrated in Table 1, which arise 

from holding one or more foreign exchange forward contracts (FX forwards) as shown in 

Table 2. Each FX forward contract incurs a “cost of carry” or hedging cost, which can be 

positive or negative depending on the interest rate differential between the currency pairs. 

For instance, consider a portfolio incorporating three FX forwards outlined in Table 2. The 

cost of carry for each forward contract depends on the currencies exchanged, the 

corresponding interest rates, and the position within the portfolio. Selling JPY for USD at 2% 

of the portfolio size results in a positive carry of  for the 

portfolio. Conversely, selling GBP for JPY leads to a negative carry of 

 due to shifting exposure from a high-interest-rate 

country to a low-interest-rate one. The total overlay position constitutes  of the portfolio, 

with a positive carry of  from the combined three forward contracts. This carry amount 

is then added to the overall portfolio return. 

Hence, the net cost of carry is the combined total of interest rates and overlay 

positions. In the case of an investment in any country , the overall contribution to the 

portfolio’s total return is as follows: 

 (4) 

  where represents the total return generated from investing in country , while , 

, and  denote the asset exposure, currency exposure, and overlay position related to 
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country , respectively. Additionally, , , and  stand for the expected asset return, 

expected currency return, and expected interest rate associated with country . 

Given that an overlay position is defined as the deviation of currency from asset 

exposures, equation (4) can be alternatively represented as: 

 

 

(5) 

 

Table 2 The cost of carry pertains to the expenses associated with forward contracts on 

foreign exchange rates. The figures in bold represent portfolio positions, stated as 

percentages. The total currency overlay position for each currency is determined by 

aggregating the net forward positions related to that currency. The cost of carry for holding 

each forward contract is calculated as the weighted sum of interest rates and forward 

positions concerning the currencies involved in the forward contract. The portfolio funding 

currency is USD. 

 USD GBP JPY Cost of Carry 

interest rate (%) 2 4 1  

sell JPY, buy USD (%) 2  -2 0.02 

sell USD, buy GBP (%) -10 10  0.20 

sell GBP, buy JPY (%)  -3 3 -0.09 

overlay (%) -8 7 1 0.13 

 

We designate  and  as the adjusted returns for assets and currencies, 

respectively. Equation (5) illustrates that the total return of the portfolio, including returns from 

assets, currencies, and foreign exchange forward carry costs, is the product of adjusted 

returns, asset exposure, and currency exposure. This indicates that the computation of 

overlay positions is unnecessary for determining a portfolio’s total return. Moreover, in 

scenarios where a portfolio does not involve forward contracts, the interest rate terms in 

equation (5) cancel out, highlighting that the formulation presented in equation (5) offers a 

generalized method for calculating total returns in international portfolios. 

To construct a portfolio with currency overlay, let  be a vector 

representing exposure from a forward contract , where  denotes the total number of 
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forward contracts available for investment across C countries. The specification of a forward 

contract dictates that only two elements of  signify the exposure, with one being the 

negative value of the other, while the remaining elements are zero. To simplify the constraints 

in an optimization problem, we define  as an element within a matrix F, wherein: 

       (6) 

 where  represents the Hadamard product operator, while  denotes the 

Kronecker product operator. T is a combinatorial matrix of size  with entries from the set 

. 1 is a column vector of ones with dimensions , and q is a column vector of 

size  that determines the size of exposure. Further elaboration on the formulation 

discussed above can be found in Chatsanga and Parkes (2017). 

The Portfolio Optimization Problem with Currency Overlay.  

Using the currency overlay portfolio structure detailed in Table 3, we can establish 

the portfolio optimization problem using the following symbols and notations: 

a : A vector of asset exposure; . 

c : A vector of currency exposure;  where  

   . 

x : A vector of decision variables; . 

r : A vector of adjusted returns; . 

 : The target return of a portfolio. 
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Table 3 Structure of an international portfolio with currency overlay 

 Country 1  Country  

 

 

 

Country C 

Asset class 1      

      

Asset class       

      

Asset class 

 
     

Forward 

position 1 
     

      

Forward 

position  
     

      

Forward 

position  
     

Asset 

exposure  
 

 
 

 

Overlay 

position  
 

 
 

 

Currency 

exposure  
 

 
 

 

Total overlay 
 

    

 

The vector r encompasses adjusted expected returns of assets and currencies, 

calculated per equation (5) through subtracting expected interest rates from asset returns 

and incorporating them into currency returns. The conditional value-at-risk (CVaR) portfolio 

risk measure is employed to evaluate the actual downside risk stemming from the joint 

distribution modeled in Section 2.2. 

The mean-CVaR portfolio optimization problem with overlay constraints is 

subsequently formulated as: 

minimize: 
 

(7a) 
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subject 

to: 

 
(7b) 

  (7c) 

  (7d) 

  (7e) 

 

 
(7f) 

 

 
(7g) 

  (7h) 

  (7i) 

  (7j) 

  (7k) 

The mathematical formulation of Conditional Value-at-Risk (CVaR) in an 

optimization problem is based on the work introduced by Rockafellar et al. (2000). In our 

proposed optimization problem, the linear expression for the CVaR objective is presented in 

(7a), and it is constrained by auxiliary variables  in (7b), where  and  represent the 

Value-at-Risk and its corresponding confidence level, respectively. It’s important to note that 

Value-at-Risk (VaR) is computed based on an approximation of a continuous joint distribution 

of asset returns. To simplify the VaR computation, the actual distribution is discretized into d 

bins. Constraint (7d) specifies the target return for the portfolio. Constraints (7e) and (7f) are 

formulated to address overlay positions. Additionally, constraint (7g) is introduced to cap the 

total overlay position, preventing excessive currency risk exposure. 

 Steps of the Analysis 

 Our analysis followed a systematic process to ensure clarity and rigor: 

1) Data Collection and Preprocessing – Historical data for the selected currencies 

and assets are collected from reliable financial databases. The data was 

cleaned and preprocessed to remove outliers and handle missing values. 

2) Estimation of Empirical Distributions – We estimated the empirical distributions 

for asset and currency returns from their corresponding historical return time 

series. This step involves calculating the mean, variance, skewness, and 

kurtosis to understand the characteristics of the return distributions. 

3) Construction of Joint Distributions – Using the estimated empirical distributions, 

we constructed joint distributions of asset returns with regular-vine copulas. 

This step allows us to capture the dependencies among the asset returns more 

accurately. 
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4) Scenario Generation – We generated multiple scenarios based on the joint 

distributions constructed in the previous step. These scenarios reflect different 

market conditions, including extreme events, to provide a comprehensive view 

of potential outcomes. 

5) Portfolio Optimization under the Mean-CVaR Framework – Using the 

generated scenarios, we performed portfolio optimization under the mean-

CVaR framework. This step involves calculating the Conditional Value-at-Risk 

(CVaR) for each portfolio and optimizing the asset allocation to minimize CVaR 

while achieving the target return. 

6) Evaluation of Portfolio Performance – The optimized portfolios were evaluated 

through backtesting to assess their performance under historical market 

conditions. This step involves comparing the risk-adjusted returns of the 

optimized portfolios with those of traditional portfolios based on multivariate 

normal distributions. 

7) Asset Allocation – The decision-making process involved selecting the optimal 

portfolio based on the evaluation results. This step normally includes 

considering the trade-offs between risk and return and the impact of 

transaction costs and hedging expenses. 

In summary, this methodology provides a detailed and structured approach to 

multicurrency portfolio optimization using vine copulas and mean-CVaR framework. By 

incorporating realistic economic assumptions, rigorous estimation methods, and systematic 

analysis steps, we ensure the robustness and applicability of our model to real-world financial 

markets. 

Results and Discussion 

 The preceding section demonstrates how to construct an international portfolio with 

a CVaR objective. This section describes how the portfolio was implemented using real-world 

data. The modelling of return distribution (whether or not nonlinear dependence of asset 

returns is taken into account) for CVaR calculation is the key driver for the resulting portfolios. 

The following experiment shows how it affects portfolio allocation and performance. 

Data 

 In our study, the investments of interest were blue-chip stock indices, government 

bond indices and currencies. Our portfolio was aimed to invest in five major countries (an 

extension for the case of three currencies in the methodology section), i.e., the United States 

(US), the United Kingdom (UK), the Eurozone (EU), Japan (JP) and China (CN). These five 

major countries were selected due to their significant influence on global financial markets, 
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diverse economic environments, and substantial trade volumes2. The base currency of the 

portfolio was USD, hence all FX returns were in USD. 

The data was collected on a monthly basis. The in-sample period ran from January 2004 to 

December 2018, and the out-of-sample period ran from January 2019 to September 2022. 

The J.P. Morgan Markets website provides local currency returns for government bonds with 

maturities ranging from 1 to 10 years, while Bloomberg supplies data on currency pairs 

(GBPUSD, EURUSD, USDJPY, and USDCNY) as well as stock index returns for the S&P 

500, FTSE 100, EURO STOXX 50, Nikkei 225, and S&P China 500. 

 Scenario Generation Results 

 In our work, we generated scenarios using two distinct approaches: RVC and MVN. 

The RVC method employs an R-Vine copula to depict the asset dependence structure within 

a return distribution that lacks a parametric form. On the other hand, the MVN method 

assumes that asset returns adhere to a multivariate normal distribution, with correlations 

delineating the dependence structure. The differing assumptions between these two methods 

lead to the creation of disparate scenarios. 

 We adopted the Monte Carlo simulation techniques outlined by Levy (2003) to 

generate scenarios based on a multivariate normal distribution (MVN). For generating RVC 

scenarios, we followed the methodology outlined in Section 2.2. Our approach encompassed 

five bivariate copula families: Gaussian, Student’s t, Clayton, Gumbel, and Frank, along with 

rotated versions of Clayton and Gumbel copulas (at 90/180/270 degrees). This selection 

aimed to encompass a broader range of asset dependence structures. Further details on 

these bivariate copula families can be found in Joe (1997) and Nelsen (2007). In both 

scenario generation methods, we assumed equal weight of bonds and equities in each joint 

distribution. This assumption allowed us to standardize the analysis and focus on the impact 

of different dependence structures and distribution shapes. 

 An example of generated scenarios from RVC and MVN approaches are illustrated 

in Figure 1. Given MVN’s assumption of normality, the return distribution shapes are 

symmetric, indicating equal frequencies of downside and upside events. In contrast, RVC 

generated samples exhibit asymmetric distributions that retain unbiased information from the 

raw data. Consequently, RVC distributions tend to have more outliers and an uneven 

distribution of downside and upside events. These distinct characteristics of scenarios 

generated by the two methods serve as primary factors influencing portfolio allocations in 

subsequent analyses across various asset classes. 

                                                        
2 The corresponding five major currencies of the country selected are the composition of IMF Special 

Drawing Right (SDR) basket which underscores their global economic significance and stability.  More 

details of the SDR on https://www.imf.org/external/np/fin/data/param_rms_mth.aspx. 

https://www.imf.org/external/np/fin/data/param_rms_mth.aspx
https://www.imf.org/external/np/fin/data/param_rms_mth.aspx
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Figure 1 A comparison of bond and equity simulated returns generated with multivariate normal 

distribution (MVN) and R-Vine copula (RVC) for all countries. It is noticed that the RVC joint return 

distributions contain more extreme observations and their dependencies are asymmetric. It is 

assumed that bonds and equities are of equal weight in each joint distribution. 

Source: Author’s calculation. 

 Experimental Studies 

 Efficient Portfolios from Different Scenario Generation Methods.  

 Our study emphasizes the impact of varied assumptions on scenario generation. 

One approach assumes that return distributions of securities follow a normal distribution, with 

asset co-movements depicted through correlations (or linear associations). In contrast, 

another approach eschews assumptions about distribution families, instead of utilizing 

empirical distributions from historical data. The interplay between assets and currencies is 

captured using copulas. Consequently, the solutions derived from these two types of 

scenarios differ in terms of assumptions about return distribution shapes and the presence of 

linear or non-linear relationships between securities. 

 To ensure the study represents a research analysis, we have carefully chosen these 

methods to illustrate the impact of different assumptions on portfolio optimization. By 

comparing the RVC and MVN approaches, we provide a detailed analysis of how varying 

dependence structures and distributional assumptions affect portfolio performance. This 

comparison is not merely conceptual but is grounded in rigorous statistical analysis, offering 

valuable insights into the robustness of the portfolio under different market conditions. 

 Efficient portfolios are inherently most effective when assessed within the specific 

context in which they were formulated. This context, termed as the “environment,” 

encompasses the returns generated under varying underlying assumptions. For instance, 

assuming the return distribution of an asset to be skewed and fat-tailed rather than Gaussian 

can lead to stark differences in the asset’s return and risk profiles. Consequently, portfolios 

optimized based on the multivariate normal return distribution (MVN) may not be optimal in 
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return scenarios generated using other methods, such as the regular-vine copula based 

scenario (RVC). The efficient frontiers depicted in Figure 2 are derived by applying optimal 

allocations to returns generated by scenario generators. Naturally, portfolios optimized within 

one environment may prove inefficient when tested within another. Different assumptions 

regarding return distributions significantly impact portfolio allocations and overall 

performance. 

 

Figure 2 The comparison of efficient portfolios under different environments. RVC portfolios 

are deemed optimal in scenarios where assumptions about return distributions do not lean 

towards normality.  Conversely, MVN portfolios are considered optimal when normal 

distribution assumptions are upheld. The left panel of the comparison graph displays the risk-

return characteristics of efficient portfolios assuming normal return distributions, while the 

right panel depicts the risk-return profiles of the same portfolios under non-Gaussian return 

distributions.  As expected, portfolios optimized within one environment exhibit reduced 

efficiency when evaluated within alternative environments. 

Source: Author’s calculation. 

 Consequently, we analyze optimal allocations produced by two scenario generation 

methods to determine if varying assumptions lead to differences in optimal allocations. The 

left panel in Figure 3 displays equity allocations, while the right panel displays foreign 

currency (non-USD) exposure in portfolios. Typically, portfolios with substantial equity 

holdings and foreign currency exposure are considered risky. Interestingly, optimal portfolios 

derived from both methods exhibit similar equity proportions, suggesting that departures from 

the normality assumption have minimal influence on bond-equity allocations. 

Figure 3. The distribution of equity across portfolios is depicted in the left panel, while the 

right panel illustrates the extent of currency hedging through the currency overlay. 
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Figure 3 The distribution of equity across portfolios is depicted in the left panel, while the 

right panel illustrates the extent of currency hedging through the currency overlay. 

Source: Author’s calculation. 

 Robust statistical techniques have been employed to evaluate the performance of 

the generated scenarios. Utilizing Monte Carlo simulations, we generate a large number of 

potential outcomes, ensuring the reliability of our results. By comparing the RVC and MVN 

scenarios, we can statistically assess the impact of different assumptions on portfolio risk and 

return. This approach provides a comprehensive understanding of how each method 

influences the final portfolio allocations. 

 In terms of hedging against exchange rate risk, the MVN and RVC portfolios exhibit 

notable differences compared to their equity allocations. RVC portfolios consistently maintain 

a minimum 25% hedge against currency risk, whereas MVN portfolios hedge for less than 

20%, particularly in situations of heightened risk appetite. This divergence highlights differing 

viewpoints on risk and interdependence across varying assumptions. Given that the normality 

assumption may not adequately account for tail risk and tail dependence, there’s a potential 

for underestimation of risk stemming from extreme events, particularly in foreign exchange 

rate movements. 

 Portfolio Performance.  

 During the out-of-sample period spanning from January 2019 to September 2022, 

this study analyzed the cumulative returns of optimal portfolios created using two scenario 

generation methods. The cumulative return index, depicted in Figure 4, illustrates the 

compounded returns starting from an initial wealth of $100 in December 2018. To capture 
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various risk preferences, we select three distinct optimal portfolios from the efficient frontiers 

based on target returns: high, medium, and low. 

 Table 4 provides descriptive statistics to cumulative returns in Figure 4. Notably, 

RVC portfolios outperform MVN portfolios across all metrics except for minimum return. This 

consistent outperformance of RVC portfolios is observed across different risk appetite levels. 

The superior performance of RVC portfolio construction could be attributed to differing 

perspectives on currency hedging. Figure 5 illustrates the mean returns and CVaRs of 

assets, along with the FX return in USD (adjusted for the cost of carry as explained in Section 

2.2.2). 

 The data illustrates that US, EU, and UK equities offer superior returns with 

comparatively lower risk than other options. In portfolios seeking higher risk tolerance, there’s 

a necessity to boost equity allocations, particularly focusing on US, EU, and UK markets. 

However, expanding exposure to equities from these regions also introduces FX risk, notably 

with EUR and GBP being among the riskier currencies. The optimal strategy revolves around 

securing robust equity returns while minimizing FX risks, achievable through strategic 

currency overlay. The RVC portfolios, with their heightened FX hedging activities as depicted 

in Figure 3, demonstrate superior performance as a result. 

 

Figure 4 Cumulative wealth over the out-of-sample period (January 2019 to September 

2022) of optimal portfolios from two scenario generation methods; RVC and MVN 

approaches. Each curve represents the cumulative wealth trajectory of optimal portfolios with 

high, medium, and low target returns. 

Source: Author’s calculation. 
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Table 4 The descriptive statistics present the out-of-sample performances of MVN and RVC 

portfolios. RVC portfolios exhibit superior risk and return attributes across various risk 

appetite levels. 

Statistic 

 MVN    RVC  

low medium high  low medium high 

mean (%) -0.04 0.13 0.64  -0.12 0.02 0.60 

std dev (%) 0.67 0.73 2.41  0.87 0.81 2.80 

min (%) -1.28 -2.31 -6.82  -1.96 -2.39 -8.40 

max (%) 1.54 1.61 5.60  1.54 2.14 7.23 

max drawdown (%) -6.10 -5.34 -10.18  -9.32 -7.13 -12.51 

 

 

Figure 5 The risk (measured by CVaR) and return (historical average from in-sample data) 

profiles of assets and currencies (FX return in USD) are considered for portfolio construction. 

These risk and return calculations are adjusted for the cost of carry. 

Source: Author’s calculation. 

Conclusion 

 This study introduces a mean-CVaR optimization model for international portfolios 

with currency overlay, effectively managing currency exposure through the integration of 

foreign exchange forwards. This dual approach offers flexibility for both hedging and 

speculating on currency risks. By optimizing asset allocation and forward positions 

simultaneously, the model seeks to achieve optimal exposure in both asset and currency 

realms. 
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 To create realistic scenarios for CVaR computation, we employ the regular-vine 

copula (RVC) to model nonlinear dependencies in asset returns. This methodology 

addresses the complexities of a multicurrency portfolio with a non-normal return distribution. 

We then compare the characteristics and performances of optimal portfolios derived from the 

RVC method with those optimized under the assumption of a multivariate normal return 

distribution (MVN). 

 Our findings reveal significant differences between RVC and MVN optimal 

allocations, especially in FX hedging positions (currency overlay). RVC portfolios generally 

exhibit higher levels of currency overlay across various risk levels due to their ability to 

capture extreme events more comprehensively through the regular vine copula model. Out-

of-sample performance evaluations show that RVC portfolios outperform MVN portfolios in 

both risk and return metrics. These results highlight the importance of modeling scenarios 

with non-normal return distributions and nonlinear dependence structures for portfolio 

optimization. The superior performance of RVC portfolios underscores the value of 

incorporating copula methods to better manage and mitigate risks in international 

investments. 
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