Fabrication of High-Performance Sodium-Ion Batteries Based on Polyaniline-derived N-doped Mesoporous Carbon as Anode Material

Main Article Content

Panitat Hasin


N-doped mesoporous carbon with high N content was prepared from in situ polymerized mesoporous silica-supported polyaniline (PANI) and was explored as a low-cost anode for sodium ion batteries. The N-doped samples possessed an enhanced electronic conductivity, rich defects, and improved Na+ adsorption capability, realizing the superior capacity of 573 mA h g−1 at 0.1 A g−1 and retaining 530 mA h g−1 even after 100 cycles. As a consequence, N-doped mesoporous carbon shows great prospect for the application of sodium-ion battery anode material. Sodium-ion batteries based on polyaniline-derived N-doped mesoporous carbon can also be the prototype of an electric vehicle industry in the country.


Download data is not yet available.

Article Details

How to Cite
P. Hasin, “Fabrication of High-Performance Sodium-Ion Batteries Based on Polyaniline-derived N-doped Mesoporous Carbon as Anode Material”, DTAJ, vol. 3, no. 8, pp. 40–49, Aug. 2021.
Research Articles


Ding, J., Wang, H., Li, Z., Kohandehghan, A., Cui, K., Xu, Z., Zahiri, B., Tan, X., Lotfabad, E. M., Olsen, B. C., & Mitlin, D. 2013. Carbon Nanosheet Frameworks Derived from Peat Moss as High Performance Sodium Ion Battery Anodes. ACS Nano. 7 (12). pp. 11004-11015.

Wu, S., Zhu, Y., Huo, Y., Luo, Y., Zhang, L., Wan, Y., Nan, B., Cao, L., Wang, Z., Li, M., Yang, M., Cheng, H., & Lu, Z. 2017. Bimetallic organic frameworks derived CuNi/carbon nanocomposites as efficient electrocatalysts for oxygen reduction reaction. Science China Materials. 60 (7). pp. 654-663.

Wang, B., Li, X., Zhang, X., Luo, B., Jin, M., Liang, M., Dayeh, S. A., Picraux, S. T., & Zhi, L. 2013. Adaptable Silicon–Carbon Nanocables Sandwiched between Reduced Graphene Oxide Sheets as Lithium Ion Battery Anodes. ACS Nano 7 (2). pp. 1437-1445.

Liu, Y., Zhang, A., Shen, C., Liu, Q., Cao, X., Ma, Y., Chen, L., Lau, C., Chen, T.-C., Wei, F., & Zhou, C. 2017. Red Phosphorus Nanodots on Reduced Graphene Oxide as a Flexible and Ultra-Fast Anode for Sodium-Ion Batteries. ACS Nano. 11 (6). pp. 5530-5537.

Yue, J., Han, F., Fan, X., Zhu, X., Ma, Z., Yang, J., & Wang, C. 2017. High-Performance All-Inorganic Solid-State Sodium–Sulfur Battery. ACS Nano. 11 (5). pp. 4885-4891.

David, L., Bhandavat, R., & Singh, G. 2014. MoS2/Graphene Composite Paper for Sodium-Ion Defence Technology Academic Journal, Volume 3, Issue 8 / July - December 2021 49 Battery Electrodes. ACS Nano. 8 (2). pp. 1759-1770.

Zhang, X., Qiu, X., Kong, D., Zhou, L., Li, Z., Li, X., & Zhi, L. 2017. Silicene Flowers: A Dual Stabilized Silicon Building Block for High-Performance Lithium Battery Anodes. ACS Nano. 11 (7). pp. 7476-7484.

Saurel, D., Orayech, B., Xiao, B., Carriazo, D., Li, X., & Rojo, T. 2018. From Charge Storage Mechanism to Performance: A Roadmap toward High Specific Energy Sodium-Ion Batteries through Carbon Anode Optimization. Advanced Energy Materials. 8 (17). pp. 1703268.

Zhou, X., Zhu, X., Liu, X., Xu, Y., Liu, Y., Dai, Z., & Bao, J. 2014. Ultralong Cycle Life Sodium-Ion Battery Anodes Using a Graphene-Templated Carbon Hybrid. The Journal of Physical Chemistry C. 118 (39). pp. 22426-22431.

Li, H., Wang, Z., Chen, L., & Huang, X. 2009. Research on Advanced Materials for Li-ion Batteries. Advanced Materials. 21 (45). pp. 4593-4607.

Zhang, J., Yin, Y.-X., & Guo, Y.-G. 2015. High-Capacity Te Anode Confined in Microporous Carbon for Long-Life Na-Ion Batteries. ACS Applied Materials & Interfaces. 7 (50). pp. 27838-27844.

Jayaraman, S., Singh, G., Madhavi, S., & Aravindan, V. 2018. Elongated graphitic hollow nanofibers from vegetable oil as prospective insertion host for constructing advanced high energy Li-Ion capacitor and battery. Carbon. 134. pp. 9-14.

Hou, H., Banks, C. E., Jing, M., Zhang, Y., & Ji, X. 2015. Carbon Quantum Dots and Their Derivative 3D Porous Carbon Frameworks for Sodium-Ion Batteries with Ultralong Cycle Life. Advanced Materials. 27(47). pp. 7861-7866.

Niu, S., Lv, W., Zhang, C., Li, F., Tang, L., He, Y., Li, B., Yang, Q.-H., & Kang, F. 2015. A carbon sandwich electrode with graphene filling coated by N-doped porous carbon layers for lithium–sulfur batteries. Journal of Materials Chemistry A. 3(40). pp. 20218-20224.

Xiong, W., Wang, Z., Zhang, J., Shang, C., Yang, M., He, L., & Lu, Z. 2017. Hierarchical ball-inball structured nitrogen-doped carbon microspheres as high performance anode for sodium-ion batteries. Energy Storage Materials. 7. pp. 229-235.

Xu, Y., Zhang, C., Zhou, M., Fu, Q., Zhao, C., Wu, M., & Lei, Y. 2018. Highly nitrogen doped carbon nanofibers with superior rate capability and cyclabilityfor potassium ion batteries. Nature Communications. 9 (1). pp. 1720.

Liu, L., Yin, Y.-X., Li, J.-Y., Wang, S.-H., Guo, Y.-G., & Wan, L.-J. 2018. Uniform Lithium Nucleation/Growth Induced by Lightweight Nitrogen-Doped Graphitic Carbon Foams for High-Performance Lithium Metal Anodes. Advanced Materials. 30 (10). pp. 1706216.

Qu, K., Zheng, Y., Zhang, X., Davey, K., Dai, S., & Qiao, S. Z. 2017. Promotion of Electrocatalytic Hydrogen Evolution Reaction on Nitrogen-Doped Carbon Nanosheets with Secondary Heteroatoms. ACS Nano. 11 (7). pp. 7293-7300.

Yang, Q., Zhou, J., Zhang, G., Guo, C., Li, M., Zhu, Y., & Qian, Y. 2017. Sb nanoparticles uniformly dispersed in 1-D N-doped porous carbon as anodes for Li-ion and Na-ion batteries. Journal of Materials Chemistry A. 5 (24). pp. 12144-12148.

Zhong, X., Tang, J., Wang, J., Shao, M., Chai, J., Wang, S., Yang, M., Yang, Y., Wang, N., Wang, S., Xu, B., & Pan, H. 2018. 3D heterostructured pure and N-Doped Ni3S2/VS2 nanosheets for high efficient overall water splitting. Electrochimica Acta. 269. pp. 55-61.

Silva, R., Voiry, D., Chhowalla, M., & Asefa, T. 2013. Efficient Metal-Free Electrocatalysts for Oxygen Reduction: Polyaniline-Derived N- and O-Doped Mesoporous Carbons. Journal of the American Chemical Society. 135 (21). pp. 7823-7826.