The Study of Roof Performance on Energy Consumption of Cleanroom for Pharmaceutical Production

Main Article Content

Suphachai Worralers
Dusit Ngamrungroj
Preeda Chantawong

Abstract

This study aims to evaluate the performance of roof insulation and its impact on energy consumption in a cleanroom of a modern pharmaceutical manufacturing facility using the OpenStudio software for data analysis. The study focused on comparing energy consumption and cooling loads in the cleanroom with various types and thicknesses of roof insulation, including Polyethylene (PE) at 3 mm, 4 mm, 5 mm, and 10 mm thickness, and Polyurethane (PU) at 25 mm and 50 mm thickness. The results indicated that increasing the thickness of roof insulation significantly reduced energy consumption for cooling. The 50 mm thick Polyurethane (PU) insulation provided the highest efficiency, with total annual energy consumption of 68,839.33 kWh and cooling energy consumption reduced to 27,159.36 kWh, compared to 71,943.75 kWh and 29,817.36 kWh, respectively, for 3 mm thick Polyethylene (PE) insulation. Additionally, increasing insulation thickness also lowered the average cooling load from 8.93 MBtu (PE 3 mm) to 7.72 MBtu (PU 50 mm). The findings suggested that selecting thicker roof insulation effectively reduced energy usage and enhances energy efficiency in cleanrooms. Therefore, the appropriate insulation installation was a cost-effective strategy to reduce energy expenses and to improve building energy performance, with 50 mm thick Polyurethane (PU) offering the best results.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
S. Worralers, D. Ngamrungroj, and P. Chantawong, “The Study of Roof Performance on Energy Consumption of Cleanroom for Pharmaceutical Production”, Def. Technol. Acad. J., vol. 7, no. 15, pp. R63-R74, Jun. 2025.
Section
Research Articles

References

กระทรวงพลังงาน. (2552, 28 สิงหาคม). ประกาศกระทรวงพลังงาน (เล่ม 126 ตอนพิเศษ 122ง). ราชกิจจานุเบกษา.

Kampelis, N., Papayiannis, G. I., Kolokotsa, D., Galanis, G. N., Isidori, D., Cristalli, C., and Yannacopoulos, A. N. (2020). An Integrated Energy Simulation Model for Buildings. Energies, 13(5), 1170.

ทินกร เชื้อวงศ์, ศุภรัชชัย วรรัตน์, และประยุทธ์ ฤทธิเดช. (2024). การปรับปรุงพลังงานของกรอบอาคารในอาคารสำนักงานภาครัฐโดยใช้แบบจำลองพลังงาน: กรณีศึกษาสำนักงานเทศบาลเมืองบางแม่นาง. วารสารวิชาการมหาวิทยาลัยอีสเทิร์นเอเชีย ฉบับวิทยาศาสตร์และเทคโนโลยี, 18(2), 92-106. https://he01.tci-thaijo.org/index.php/

Abbaas, E. S., Ismail, M., Saif, A. A., and Ghazali, M. A. (2024). Optimizing the thermal performance of residential buildings in Jordan. Journal of Engineering Research. https://doi.org/10.1016/j.jer.2024.05.025

Rasul, M. G. and Doring, C. (2017). Performance assessment of desiccant air conditioning system in an institutional building in subtropical climate. Energy Procedia, 110, 486–491. https://doi.org/10.1016/j.egypro.2017.03.173

Fang, H., Zhao, D., Yuan, J., Aili, X., Yin, X., Yang, R., and Tan, G. (2019). Performance Evaluation of a Metamaterial-Based New Cool Roof Using Improved Roof Thermal Transfer Value Model. Applied Energy. Vol. 248, pp. 589–599.

He, Y., Lin, E.S., Tan, C.L., Yu, Z., Tan, P.Y. and Wong, N.H. (2021). Model Development of Roof Thermal Transfer Value (RTTV) for Green Roof in Tropical Area: A Case Study in Singapore. Building and Environment. Vol. 203, Article No. 108101.

Brackney, L., Parker, A., Macumber, D., and Benne, K. (2018). Building energy modeling with OpenStudio: A practical guide for students and professionals. Springer.

American Society of Heating, Refrigerating and Air-Conditioning Engineers. (2021). ASHRAE Handbook—Fundamentals (I-P ed.). Atlanta, GA : American Society of Heating, Refrigerating and Air-Conditioning Engineers