The The Improvement of High-temperature Silane Modified Phenolic Resins for Rocket Nozzle Insulation

Main Article Content

Chatchaphon Sae-ngow
Paisan Apinhapat
Phimraphas Ngamsantivongsa
Chesda Kiriratnikom

Abstract

In this research, composite materials were studied and developed for application in the
aerospace industry. This project aims to develop thermal insulation materials for rocket motor nozzles.
Solid rocket motors are designed to withstand the high temperatures produced by combustion.
Thermal insulation materials based on phenolic composite materials have the properties of heat
resistance, ablation resistance at temperatures up to 3000๐
C, and good decomposition resistance,
which are the most commonly used. The properties of silane-modified phenolic resin (PR-S) were
studied in this study to improve ablation resistance, and the types and main chemical components
of the modified phenolic resin have been investigated using Fourier transform infrared spectroscopy
(FTIR) and hot compression molding techniques, respectively, to assess the ablation properties of
these composite materials. Standard experimental methods were employed to determine the
mechanical properties, radiographic tests, and static tests of the phenolic composite materials. According
to the FTIR analysis based on ASTM E1252-98, the energy absorption of polysiloxane (Si-O-Si) and silane
Si-O-C bonds was 1184.19 cm-1, which indicates the modification of silane in phenolic resins. Results
showed that the modified PR-S composites significantly increased ablation resistance based on ASTM
E285-08 test using oxyacetylene gas as a high temperature source. Modified phenolic resin materials
still possessed sufficient mechanical properties to meet the standard requirements. The radiographic
test results confirm the uniformity of the extruded insulation, and the static test results confirm the
ability of the modified phenolic composite materials to withstand the heat load generated by rocket
operation, with a confidence level of not less than 90%. Thus, the results of this research can be used
to confirm the potential for domestic production of parts and thereby to achieve true self-reliance.

Downloads

Article Details

How to Cite
[1]
C. Sae-ngow, . P. Apinhapat, P. Ngamsantivongsa, and . C. Kiriratnikom, “The The Improvement of High-temperature Silane Modified Phenolic Resins for Rocket Nozzle Insulation”, Def. Technol. Acad. J., vol. 6, no. 14, pp. R71–87, Feb. 2025.
Section
Research Articles

References

ศ. วงศ์เจริญ. “Northrop Grumman จะปล่อยดาวเทียมสอดแนมของสหรัฐฯ ใน 15 มิ.ย..” BEARTAI.com. https://www.beartai.com/tech/science/669108 (accessed Jun. 1, 2024).

ช. ชัยชื่นชอบ. “ทำความรู้จัก Vega จรวดนำส่ง THEOS-2.” GISTDA.or.th. https://www.gistda.or.th/news_view.php?n_id=6918&lang=TH (accessed Jun. 1, 2024).

China Media Group. “คลิกคลิป: จีนส่งดาวเทียมขึ้นสู่อวกาศจากท้องทะเลพร้อมกันห้าดวง.” MGRONLINE.com. https://mgronline.com/china/detail/9650000041906 (accessed Jun. 1, 2024).

Wikipedia. “S-Series (rocket family).” EN.WIKIPEDIA.org. https://en.wikipedia.org/wiki/S-Series_(rocket_family) (accessed Jun. 1, 2024).

L. Pilato, Phenolic Resins: A Century of Progress. 1st ed., Berlin, Heidelberg, Germany : Springer, 2010, pp. 263 - 306.

Science History Institute. “Leo Hendrik Baekeland.” SCIENCEHISTORY.org. https://www.sciencehistory.org/education/scientific-biographies/leo-hendrik-baekeland/(accessed Feb. 1, 2023).

L. Pilato, Phenolic Resins: A Century of Progress. 1st ed., Berlin, Heidelberg, Germany: Springer, 2010, pp. 154 - 437.

L. M. Higashi, “Laminate Structures,” US Patent 3,074,904, Jan. 16, 1963.

P. Ngamsantivongsa, S. Boonthalarath, B. Wong-ek, S. Nuanklai, and C. Kiriratnikom, “Development and Characterization of Ablative Materials Used for Rocket Motors,”in 2017 Third Asian Conf. Defence Technol. (ACDT), Phuket, Thailand, 2017, pp. 110 – 114, doi: 10.1109/ACDT.2017.7886168.

K. Kanimozhi, K. Sethuraman, V. Selvara, and M. Alagar, “Development of Ricehusk Ash Reinforced Bismaleimide Toughened Epoxy Nanocomposites,” Front. Chem., vol. 2, no. 65, pp. 1 - 9, Jul. 2014, doi: 10.3389/fchem.2014.00065.

A. M. Kawamoto, L. C. Pardini, M. F. Diniz, V. L. Lourenco, and M. F. K. Takahashi, “Synthesis of a Boron Modified Phenolic Resin,” J. Aerosp. Technol. Manage., vol. 2, no. 2, pp. 169 - 182, Aug. 2010, doi: 10.5028/jatm.2010.02027610.

Nanostructure Science and Technology, Device Applications of Silicon Nanocrystalsand Nanostructures, New York, USA: Springer Science+Business Media, 2009, doi: 10.1007/978-0-387-78689-6.

J. Yun, C. Lixin, H. Zhao, Z. Xiaofei, W. Ye, and D. Zhu, “Boric Acid as a Coupling Agent for Preparation of Phenolic Resin Containing Boron and Silicon with Enhanced Char Yield,” Macromol. Rapid Commun., vol. 40, no. 17, p. 1800702, 2018, doi: 10.1002/marc.201800702.

A. Issa and A. S. Luyt, “Kinetics of Alkoxysilanes and Organoalkoxysilanes Polymerization: A Review,” Polym., vol. 11, no. 3, pp. 1 - 41, Mar. 2019, doi: 10.3390/polym11030537.

G. F. Sykes, “Decomposition Characteristics of a Char-Forming Phenolic Polymer Used for Ablative Composites,” NASA Technical Note D-3810, Feb. 1967. [Online]. Available: https://ntrs.nasa.gov/api/citations/19670008814/downloads/19670008814.pdf

G. W. Sutton, “The Initial Development of Ablation Heat Protection, An Historical Perspective,” J. Spacecraft, vol. 19, no. 1, 1982, doi: 10.2514/3.62196.

L. H. Caveny, R. A. Ellis, R. L. Geisler, and T. L. Moore, “Solid Rocket Enabling Technologies and Milestones in the United States,” J. Propul. Power, vol. 19, no. 6, 2003, doi: 10.2514/2.6944.

J. W. Ward and G. L. Squire, “Sodium Carbonate Treatment of High Silica Fiber Products,” U.S. Patent 3,454,453, Jul. 8, 1969.

M. Thebault, A. Kandelbauer, U. Muller, E. Zikulnig Rusch, and H. Lammer, “Factors Influencing the Processing and Technological Properties of Laminates based on Phenolic Resin Impregnated Papers,” Eur. J. Wood Wood Products, vol. 75, no. 45, pp. 785 - 806, 2017, doi: 10.1007/s00107-017-1205-8.

ช. แซ่โง้ว, พ. งามสันติวงศ์ และ จ. คีรีรัฐนิคม, “การพัฒนาวัสดุคอมโพสิตทนทานต่อการเสียดกร่อนสำหรับฉนวนท่อไอพ่นจรวด,” ใน การประชุมวิชาการเครือข่ายวิศวกรรมเครื่องกลแห่งประเทศไทย ครั้งที่ 37, โรงแรมเดอะเบด เวเคชั่น ราชมังคลา, สงขลา, ไทย, 2566.

U.S. Army Test and Evaluation command, Field Artillery Statistics, Materiel Test Procedure 3-1-005, Mar. 1972.

E. R. Sherwin, “Analysis of "One Shot" Devices,” Reliability Analysis Center, New York, USA, Rep. AD1035817, 2000. Accessed: Nov. 25, 2022. [Online]. Available: https://apps.dtic.mil/sti/pdfs/AD1035817.pdf

D. Bianchi, A. Turchi, F. Nasuti, and M. Onofri, “Chemical Erosion of Carbon-Phenolic Rocket Nozzles with Finite-Rate Surface Chemistry,” J. Propul. Power, vol. 29, no. 5, pp. 1220 - 1230, Sept. 2013, doi: 10.2514/1.B34791.

D. R. Bartz, “Simple Equation for Rapid Estimation of Rocket Nozzle Convective Heat Transfer Coefficients,” J. Jet Propuls., vol. 27, Jan. 1957, doi: 10.2514/8.12572.

B. Erzen, M. Karatas, S. Deniz, and E. Aydogmus, “Advances in Synthesis, Characterization, and Industrial Applications of Phenol Formaldehyde Resins,” IJANSER, vol. 8, no. 4, pp. 26 - 34, Feb. 2024. [Online]. Available: https://as-proceeding.com/index.php/ijanser/article/view/1817/1758.

A. H. Pullichola, L. A. Varghese, U. Gopalakrishnapanicker, and K. M. Das, “Fourier Transform Infra-red Spectroscopy to Determine Formaldehyde to Phenol Ratio of Phenol Formaldehyde Resole,” J. Elastomers Plast., vol. 54, no. 4, pp. 593 - 604, Jan. 2022, doi: 10.1177/00952443211054197.

H. Jiang et al., “The Pyrolysis Mechanism of Phenol Formaldehyde Resin,” Polym. Degrad. Stab., vol. 97, no. 8, pp. 1527 - 1533, Aug. 2021, doi: 10.1016/j.polymdegradstab.2012.04.016.

S. Wang, X. Jing, Y. Wang, and J. Si, “High Char Yield of Aryl Boron-containing Phenolic Resins: The Effect of Phenylboronic Acid on The Thermal Stability and Carbonization of Phenolic Resins,” Polym. Degrad. Stab., vol. 99, no. 1, pp. 1 - 11, Jan. 2013, doi: 10.1016/j.polymdegradstab.2013.12.011.

J. Yun, C. Lixin, H. Zhao, Z. Xiaofei, W. Ye, and D. Zhu, “Boric Acid as a Coupling Agent for Preparation of Phenolic Resin Containing Boron and Silicon with Enhanced Char Yield,” Macromol. Rapid Commun., vol. 40, no. 17, Dec. 2018, doi: 10.1002/marc.201800702.

W. A. W. A. Rahman, N. Adenan, R. R. Ali, and H. Sulaiman, “Effect of Silane Crosslinker on the Thermal Properties of Rice Straw/HDPE Biocomposite,” J. Appl. Sci., vol. 9, no. 17, pp. 3041-3047, 2009, doi: 10.3923/jas.2009.3041.3047.

A. Grill and D. Neumayer, “Structure of Low Dielectric Constant to Extreme Low Dielectric Constant SiCOH Films: Fourier Transform Infrared Spectroscopy Characterization,” J. Appl. Phys., vol. 94, no.10, pp. 6697 - 6707, Nov. 2003, doi: 10.1063/1.1618358.

S. Y. Jing, H. J. Lee, and C. K. Choi, “Chemical Bond Structure on Si-O-C Composite Films with a Low Dielectric Constant Deposited by Using Inductively Coupled Plasma Chemical Vapor Deposition,” JKPS, vol. 41, no. 5, pp. 769 - 773, Nov. 2002.

T. Lu et al., “Effects of Modifications of Bamboo Cellulose Fibers on The Improved Mechanical Properties of Cellulose Reinforced Poly(Lactic Acid) Composites,” Compos. B Eng., vol. 62, pp. 191 - 197, Jun. 2014, doi: 10.1016/j.compositesb.2014.02.030.

C. Arslan and M. Dogan, “The Effects of Silane Coupling Agents on The Mechanical Properties of Basalt Fiber Reinforced Poly (Butylene Terephthalate) Composites,” Compos. B Eng., vol. 146, pp. 145 - 154, Aug. 2018, doi: 10.1016/j.compositesb.2018.04.023.

พ. อภิณหพัฒน์ และ ส. นวลคล้าย, “ผลของการเติมเส้นใยและสารหน่วงไฟที่มีต่อสมบัติของฉนวนกันความร้อนชนิดยางคอมพาวด์ในมอเตอร์จรวด,” ใน การประชุมวิชาการข่ายงานวิศวกรรมอุตสาหการ ประจำปี 2564, โรงแรมเดอะเบด เวเคชั่น ราชมังคลาสงขลา, ไทย, 2564.

Most read articles by the same author(s)